Ұстаздар сайты u-s.kz Сайттың атауы www.u-s.kz
» » Екі айнымалысы бар сызықтық теңдеудің графигі


Екі айнымалысы бар сызықтық теңдеудің графигі

Сабақтың тақырыбы: Екі айнымалысы бар сызықтық теңдеудің  графигі


Сабақтың мақсаттары: ах+вус теңдеуіндегі айнымалыларды ең  болмағанда біреуінің коэффициенті нөлге тең болмағанда оның графигі түзу сызық болатынын білу.
Екі айнымалысы бар сызықтық теңдеудің графигін білу дағдысын қалыптастыру.
Сабақта қолданылатын көрнекіліктер: кестелер, формулалар жазылған кесінділер, логикалық тапсырмалар.
Сабақтың әдіс-тәсілдері: көрнекіліктерді қолдану, практикалық жаттығу жұмыстарын орындату, диктант өткізу. әңгімелеу, баяндау, практикалық сабақ.
Сабақтың типі: жаңа сабақ 
Сабақ барысы:
• Ұйымдастыру кезеңі
• Логикалық тапсырма шешу.
• Жаңа сабақты түсіндіру.
• Жаңа сабақты меңгерту есептерін шығарту
• Математикалық диктант өткізу.
• Жаңа сабақты бекіту.
• Үйге тапсырма беру.
• Сабақты қорытындылау, бағалау.
Оқушыларды түгелдеу, сабаққа дайындығын тексеру.

Логикалық тапсырма.

                   +                   8                  -              ?

                 +                 9

                 +                 ?

 


Оқушыларды зейінін сабаққа аударын алғаннан кейін жаңа сабақты түсіндіруді бастаймын.
Тақырыптың алдын ала тапсырмасында у3х-2  екі айнымалысы бар сызықтық теңдеуді шешу қысқаша келтірілді. а3   в1   с-2
у3х-2  теңдеуінің графигі төменде көрсетілген.
Координаталық жазықтықтағы координаталары теңдеудің  шешімдері болатын нүктелер жиыны екі айнымалысы бар теңдеудің графигі деп аталады.
1-мысал  х-2у4 сызықтық теңдеуінің графигі
ах+вус  теңдеуіндегі а≠0    в≠ 0   с≠0    болса, оның графигі  ординаталар Оу осімен (0;с/в) нүктесінде, ал абсциссалар Ох  осімен (с/в; 0)  нүктесінде  қиылысатын түзу болады.


Ах+вус теңдеуіндегі  в0 а≠0 с≠0  болсын.
2-мысал4х+0*у8 4х8 х2

бұл жағдайда теңдеудің графигі Ох абсциссалар осімен (2,0)  нүктесінде қиылысатын, Оу осіне параллель  түзу болады.
 Ах+вус теңдеуіндегі  а0 в≠0 с≠0  болсын.
3-мысал 0*х+3у9  3у9  у3
бұл жағдайда теңдеудің графигі ординаталар осімен (0,3) нүктесінде қиылысатын, ал Ох абсциссалар осіне параллель түзу.
Ах+вус екі айнымалысы бар сызықтық теңдеудің ең болмағанда бір айнымалысының коэффициенті нөлге тең болмаса, оның графигі түзу сызық болады.
№1452 оқушылар ауызша жеке жауап береді.
І деңгейлік тапсырмалар.
№1453 теңдеу графигін салыңдар.Оқушылар кезекпен тақтаға шығып, орындайды.
х+у3
у3-х
х+4у3
4у3-х
у3/4-1/4*х

№1454     5х+3у15 теңдеуіне тиісті нүктелерді табу.Оқушылар дәптерлерінде жеке орындайды.
№1455 2х+у5 теңдеуінің графигін салу. х2 болса, у-тің мәні неге тең?
у5-2х  теңдеуінің графигі
2*2+у5    у1
оқушылар жұптық жұмыс жүргізеді.
Математикалық диктант. 
• у-2х+2 теңдеуінің графигін салыңдар.
• у2х+3 теңдеуінің графигін салыңдар.
Бекіту сұрақтарына оқушылар қолдарын көтеріп жауап береді:
 Екі айнымалысы бар сызықтық теңдеудің графигі қандай фигура болады?
 у0 болса, график қандай болады?
 х0 болса, график қалай болады?
Сабақты қорытындылау, бағалау.
Үйге тапсырма №1459,1460 есептерді шығару.


Соңғы жарияланған материалдар тізімі
Бір айнымалысы бар сызықтық теңдеу
Бір айнымалысы бар сызықтық теңдеу
Функция тарауын қайталау
Екі айнымалысы бар сызықтық теңдеулер
Екі айнымалысы бар сызықтық теңдеулер жүйелері. Екі айнымалысы бар сызықтық теңдеулер жүйесін графиктік тәсілмен шешу
Екі айнымалысы бар сызықтық теңдеулер жүйелері. Екі айнымалысы бар сызықтық теңдеулер жүйесін алмастыру тәсілімен шешу
Айнымалысы модуль таңбасының ішінде берілген теңдеулер
Екі айнымалысы бар сызықтық теңдеу және оның графигі
Екі айнымалысы бар сызықтық теңдеу және оның графигі
Екі айнымалысы бар сызықтық теңдеу және оның графигі
Бөлім: Уроки / Математика | Көрсетілім: 3184 | Қосты: NA | Ілмек сөздер:
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Бөлімдер
История
открытые уроки по истории
Педагогика
открытые уроки по педагогике
Биология
открытые уроки по биологии
Информатика
открытые уроки по информатике
Математика
открытые уроки по математике
Физика
открытые уроки по физике
Химия
открытые уроки по химии
Разное
открытые уроки
География
Открытые уроки по географии
русский язык